ผู้ช่วยศาสตราจารย์ ดร.อานนท์ ศักดิ์วรวิชญ์
ผู้อำนวยการหลักสูตรปรัชญาดุษฎีบัณฑิตและวิทยาศาสตรมหาบัณฑิต
สาขาวิชาการวิเคราะห์ธุรกิจและวิทยาการข้อมูล
https://www.facebook.com/BusinessAnalyticsNIDA/
คณะสถิติประยุกต์ สถาบันบัณฑิตพัฒนบริหารศาสตร์
ผู้อำนวยการหลักสูตรปรัชญาดุษฎีบัณฑิตและวิทยาศาสตรมหาบัณฑิต
สาขาวิชาการวิเคราะห์ธุรกิจและวิทยาการข้อมูล
https://www.facebook.com/BusinessAnalyticsNIDA/
คณะสถิติประยุกต์ สถาบันบัณฑิตพัฒนบริหารศาสตร์
โลกก้าวไกลไปด้วยปัญญาประดิษฐ์ (Artificial Intelligence) และการเรียนรู้ด้วยเครื่องจักร (Machine Learning) ของเรียกรวมว่า AIML คอมพิวเตอร์ในปัจจุบันทำอะไรที่ในอดีตทำแทบไม่ได้เลย และในอนาคตปัญญาประดิษฐ์และการเรียนรู้ด้วยเครื่องจักรจะมาทำหน้าที่แทนคนเป็นอันมาก
อุตสาหกรรมที่เอาปัญญาประดิษฐ์และการเรียนรู้ด้วยเครื่องจักรมาแทนคนจำนวนมากมายและเริ่มเลย์ออฟพนักงาน คือธนาคาร โดยเฉพาะธนาคารพาณิชย์ไทยขนาดใหญ่จำนวนมาก 5-6 แห่งต่างเลย์ออฟพนักงานที่มีทักษะเก่าที่ธนาคารไม่ได้ต้องการแล้วออกไปเป็นจำนวนมากเช่น teller หน้าเคาเตอร์ ซึ่งผู้บริโภคหันไปใช้ mobile banking และ internet banking กันแทบจะหมดแล้ว สาขาก็เริ่มปิดตัวไป สมัยก่อนคนที่จบการศึกษาด้านเศรษฐศาสตร์นิยมทำงานด้านธนาคาร และธนาคารก็นิยมรับคนจบเศรษฐศาสตร์ แต่มาวันนี้ธนาคารไม่ได้ต้องการคนจบเศรษฐศาสตร์แล้ว และเศรษฐศาสตร์ก็มีคนเรียนน้อยลงมาก เพราะจบมาแล้วอาจจะหางานทำยากเมื่อเทียบกับในอดีต แต่ว่าธนาคารต่างๆ ในประเทศไทย เลย์ออฟคนแล้ว กลับรับคนใหม่เข้ามามากมาย เช่น ธนาคารแห่งหนึ่งมีพนักงาน 18,000 คน เลย์ออฟพนักงานจนเหลือ 10,000 คน แล้วรับใหม่เข้ามาจนมีพนักงานอยู่ 21,000 คน แสดงให้เห็นว่าแท้จริงแล้วปริมาณงานไม่ได้ลดลง และกิจการก็ไม่ได้แย่ลง ธนาคารคงคิดว่าไม่อาจจะเปลี่ยนทักษะ (Re-skill) พนักงานเดิมได้ สู้เลย์ออฟแล้วได้พนักงานใหม่ที่มีทักษะใหม่ที่ธนาคารต้องการจะดีกว่า ทักษะใหม่ที่ว่าได้แก่ ทักษะด้านวิทยาการคอมพิวเตอร์ การพัฒนาซอฟท์แวร์ วิทยาการข้อมูล Financial Technology ปัญญาประดิษฐ์และการเรียนรู้ด้วยเครื่องจักรหรือ AIML ความมั่นคงไซเบอร์ และ Blockchain เป็นอาทิ
โลกในยุคต่อไป AIML จะเข้ามาแทนมนุษย์ในแทบทุกอุตสาหกรรม ทรัมป์บอกว่าจะตั้งกำแพงภาษีหาก NISSAN ไปตั้งโรงงานรถยนต์ในเม็กซิโก NISSAN มาตั้งโรงงานในสหรัฐอเมริกาทันทีแต่ใช้หุ่นยนต์และ AIML แทน ทำให้ลดคนงานจากหลายพันคนเหลือเพียงไม่กี่สิบคน ผลิตรถยนต์ได้เร็วกว่าโรงงานที่จ้างคนมาก ๆ โรงงานผลิตอาหารของเครือเจริญโภคภัณฑ์ที่สร้างใหม่ในประเทศจีนก็ใช้หุ่นยนต์และ AIML แทนคนงานจำนวนมาก ใช้คนคุมเครื่องจักร หุ่นยนต์และ AIML ไม่กี่คนก็สามารถผลิตอาหารเลี้ยงจนจีนวันละเป็นล้านคนได้ในแต่ละวันอย่างง่ายดาย ด้วยต้นทุนที่ถูกกว่ากันมาก
การที่ AIML เติบโตอย่างรวดเร็วและสร้างความได้เปรียบในการแข่งขัน ลดต้นทุน ทำให้เกิดความต้องการผู้ที่มีความเชี่ยวชาญด้าน AIML มากขึ้นเรื่อย ๆ และเกิดอาชีพใหม่ที่เรียกว่า วิศวกรปัญญาประดิษฐ์ (Artificial Intelligence Engineer) ซึ่งเป็นผู้เชี่ยวชาญด้าน AIML นั่นเอง
วิศวกรปัญญาประดิษฐ์ ทำหน้าที่อะไร คำตอบคือ ทำหน้าที่พัฒนาและให้คำปรึกษาในการใช้ปัญญาประดิษฐ์และการเรียนรู้ด้วยเครื่องจักรไปประยุกต์ใช้กับข้อมูลประเภทต่าง ๆ หรือข้อมูลใหม่ ๆ ในธุรกิจต่าง ๆ ซึ่งต้องประยุกต์ให้เหมาะสม การให้คำปรึกษานี้ต้องรวมการพัฒนาไปด้วย เช่นอาจจะมีข้อมูลประเภทใหม่ หรือธุรกิจใหม่ ๆ ที่ต้องอาศัยปัญญาประดิษฐ์และการเรียนรู้ด้วยเครื่องจักรวิธีใหม่ และ/หรือต้องมีการปรับจูนพารามิเตอร์ในปัญญาประดิษฐ์หรือการเรียนรู้ด้วยเครื่องจักรเดิมให้ทำงานได้ดีเหมาะสมกับข้อมูลใหม่ ๆ หรืออุตสาหกรรมที่แตกต่างกันไป
ดังนั้นวิศวกรปัญญาประดิษฐ์จึงต้อง
1. เข้าใจขั้นตอนวิธี (Algorithm) ของปัญญาประดิษฐ์และการเรียนรู้ด้วยเครื่องจักร อย่างลึกซึ้งพอที่จะแก้ไขปัญหาและแนะนำให้นักวิทยาการข้อมูล (Data scientist) นักวิเคราะห์ธุรกิจ (Business Analyst) นักวิเคราะห์ข้อมูล (Data Analyst) เลือกใช้ AIML ได้อย่างเหมาะสมกับประเภทและความซับซ้อนของปัญหาและข้อมูลที่ต้องการวิเคราะห์
2. เข้าใจการปรับจูนค่าพารามิเตอร์ใน AIML และเข้าใจวิธีการหาค่าเหมาะสุด (Optimization) ใน AIML ให้ได้ผลลัพธ์ที่ดีที่สุด แก้ไขปัญหาได้เมื่อเกิดปัญหา
3. ต้องมีความเข้าใจข้อมูลที่มีโครงสร้าง โครงสร้างของข้อมูล ข้อมูลที่ไร้โครงสร้าง (Unstructured data) ได้แก่ ข้อมูลจากสื่อสังคม ข้อมูลภาพสอง-สามมิติ วีดิทัศน์สอง-สามมิติ มัลติมีเดีย เสียง ข้อความ คลื่น ๆ และอื่น ๆ อีกมาก ต้องจัดการข้อมูลได้ เพื่อให้เลือกใช้ AIML ให้เหมาะสมกับข้อมูลแต่ละประเภทและที่มีความซับซ้อน
4. มีความคิดสร้างสรรค์และความคิดวิเคราะห์ในการประยุกต์ใช้ AIML หรือพัฒนา AIML ใหม่ ๆ มีประสิทธิภาพดีกว่าขั้นตอนวิธีเดิม เพื่อตอบโจทย์ในการเอาไปใช้งานจริง เพิ่มความสามารถในการแข่งขันในอุตสาหกรรม
วิศวกรปัญญาประดิษฐ์ในสหรัฐอเมริกาเป็นอาชีพที่มีรายได้ดีมาก ไม่ว่าจะเป็น Google, Facebook และ Technoprenuership อื่น ๆ ต่างก็จ้างวิศวกรปัญญาประดิษฐ์มาช่วยแนะนำและแก้ไขปัญหาการวิเคราะห์ของหน่วยงานตลอดจนพัฒนาระบบการทำงานใหม่ ๆ ให้ดีมีประสิทธิภาพมากขึ้น ลดจำนวนพนักงานลงไปได้มาก
คำที่วิศวกรปัญญาประดิษฐ์พูดกันบ่อย ๆ มีอยู่หลายคำ ลองไปค้นคำ เช่น Keras, TensorFlow, Deep Learning, Reinforcement Learning, PyTorch, Weka, Apache Spark, Scikit Learn เป็นต้น ซึ่งเป็น software หรือ AIML ตัวใหม่ๆ ที่กำลังแพร่หลายในวงการ AIML ในโลกปัจจุบัน
วิศวกรปัญญาประดิษฐ์ เป็นงานที่ขาดแคลนมากในสหรัฐอเมริกา เป็นงานที่ใช้ความรู้ทั้งด้านคณิตศาสตร์/สถิติศาสตร์/คอมพิวเตอร์/ขั้นตอนวิธี จึงค่อนข้างหายาก ที่สำคัญอย่างยิ่งคือต้องมีความสามารถในการสื่อสารเรื่องยาก ๆ ทางเทคนิคให้ง่าย ให้คนที่ไม่มีพื้นฐานทางวิทยาการคอมพิวเตอร์ สถิติศาสตร์ หรือคณิตศาสตร์สามารถฟังแล้วเข้าใจได้ง่าย
คนที่จะเรียนทำงานเป็นวิศวกรปัญญาประดิษฐ์ได้ควรจบอย่างน้อยระดับปริญญาโทหรือถ้าจะให้ดีควรจบระดับปริญญาเอก ควรจบปริญญาตรีทางคณิตศาสตร์/วิทยาการคอมพิวเตอร์/วิศวกรรมคอมพิวเตอร์ จะได้เปรียบนิดหน่อยแต่ไม่เสมอไป คนที่คณิตศาสตร์ดี/เขียนโปรแกรมได้ดี/ตรรกะในการคิดวิเคราะห์ดี ย่อมสามารถเรียน AIML เพื่อให้เป็นวิศวกรรมปัญญาประดิษฐ์ได้ต่อไปในอนาคต
ในอนาคตประเทศไทยก็น่าจะต้องการวิศวกรปัญญาประดิษฐ์เพิ่มมากขึ้น โดยเฉพาะอย่างยิ่งในภาคเอกชนที่มีการนำ AIML มาใช้งานจริงในธุรกิจเพิ่มขึ้นทุก ๆ วัน เพื่อเพิ่มความสามารถในการแข่งขันและความยั่งยืนทางธุรกิจ
ยกตัวอย่างเช่น ธนาคารพาณิชย์แห่งหนึ่ง ยกเลิกการจ้างพนักงานประเมินราคาอสังหาริมทรัพย์จาก outsource ภายนอกที่ต้องเสียค่าจ้าง (โดยผู้ขอกู้เงินต้องจ่าย) อย่างน้อยครั้งละ 2500 บาท โดยใช้ปัญญาประดิษฐ์ในการประเมินราคาอสังหาริมทรัพย์แทนคน ผู้กู้ต้องกรอกรายละเอียดของอสังหาริมทรัพย์ให้ครบถ้วนและถ่ายรูปมาแสกนเข้าระบบคอมพิวเตอร์ที่มีปัญญาประดิษฐ์ ทำให้ตีราคาอสังหาริมทรัพย์ได้แม่นยำเกือบเท่ากับการจ้างนักประเมินราคาอสังหาริมทรัพย์ ซึ่งเป็นผู้เชี่ยวชาญได้ใกล้เคียงมาก อีกทั้งการใช้ปัญญาประดิษฐ์ยังเป็นการลดการใช้ดุลพินิจอันเป็นการป้องกันการทุจริตคอร์รัปชั่นไปได้ในตัวเอง
หลักสูตรวิทยาศาสตร์มหาบัณฑิต (การวิเคราะห์ธุรกิจและวิทยาการข้อมูล) คณะสถิติประยุกต์ สถาบันบัณฑิตพัฒนบริหารศาสตร์ เปิดสอนปริญญาโทสองสาขามานานพอสมควรคือสาขาวิชาปัญญาและการวิเคราะห์ธุรกิจ (Business Analytics and Intelligence) และสาขาวิทยาการข้อมูล (Data Science) และการแข่งขันในการเข้าเรียนของทั้งสองสาขาก็สูงมาก แต่เนื่องจากความจำเป็นของประเทศที่ต้องการวิศวกรปัญญาประดิษฐ์เพื่อตอบสนองความต้องการภาคเอกชนและยุทธศาสตร์ชาติ Thailand 4.0 จึงได้พัฒนาสาขาวิชา ปัญญาประดิษฐ์และการเรียนรู้ด้วยเครื่องจักร (Artificial Intelligence and Machine Learning: AIML) ทั้งในภาคปกติและภาคพิเศษ เพื่อผลิตวิศวกรปัญญาประดิษฐ์ให้กับประเทศไทย
ผู้สมัครเข้าเรียนไม่จำกัดสาขาวิชา แต่ต้องมีพื้นฐานคณิตศาสตร์ที่ดีมาก และมีพื้นฐานการเขียนโปรแกรมตลอดจนความคิดวิเคราะห์และตรรกะที่แม่นยำ
ในปีแรกของการศึกษานักศึกษาทั้งหลักสูตรจะเรียนวิชาปรับพื้นฐานและวิชาแกนร่วมกันดังแผนภาพด้านล่างนี้ วิชาที่พื้นหลังเป็นสีเหลืองเป็นวิชาปรับพื้นฐาน ผู้ที่เรียนมาแล้วระดับปริญญาตรีสามารถทดสอบ (Placement test) เพื่อข้ามไปเรียนวิชาอื่นได้เลยหากสอบผ่าน สำหรับวิชาที่เรียนมี
วิชาการจัดการข้อมูลใหญ่ (Managing Big Data) เพื่อให้สามารถจัดการกับข้อมูลใหญ่ในรูปแบบต่างๆ ได้ วิชาการวิเคราะห์ธุรกิจและวิทยาการข้อมูลเบื้องต้น (Introduction to Business Analytics and Data Science) ซึ่งสอนให้นักศึกษาเห็นภาพรวมของทุกสาขาวิชา และเข้าใจการนำไปประยุกต์ใช้ แต่นิสิตจะเรียกว่า วิชา (สาบาน) ว่าอินโทร
วิชาการวิเคราะห์ข้อมูลเชิงบุกเบิกและการวาดภาพนิทัศน์จากข้อมูล (Exploratory Data Analysis and Data Visualization) วิชานี้สอนให้วาดรูปจากข้อมูลทั้งวิชา สอนเรื่องการออกแบบ เป็นวิชาที่ใช้สมองทุกซีกทุกส่วนของมนุษย์ และใช้ความรู้สารพัดสาขาวิชา ตั้งแต่ จิตวิทยา คอมพิวเตอร์ สถิติ ศิลปะ สถิติศาสตร์ คณิตศาสตร์ และการเขียนโปรแกรมคอมพิวเตอร์
วิชาการออกแบบวิจัยและวิธีการแสวงหาความรู้ (Research Design and Inquiry Methods) สอนให้ออกแบบงานวิจัยเป็น ให้แสวงหาความรู้ด้วยตนเองได้ เข้าใจปรัชญาวิทยาศาสตร์และญาณวิทยาแห่งการแสวงหาความรู้ มีความคิดวิจารณญาณ
วิชาสถิติวิเคราะห์สมัยใหม่ประยุกต์ (Applied Modern Statistical Analysis) เน้นไปที่สถิติอนุมาน การสร้างตัวแบบ และสถิติสมัยใหม่ที่เน้นการคำนวณเข้มข้น (Computationally-intensive statistical methods) อันเป็นพื้นฐานของปัญญาประดิษฐ์ วิทยาการข้อมูล และการเรียนรู้ด้วยเครื่องจักร
วิชาการวิเคราะห์เชิงกำหนดและการหาค่าเหมาะสุดประยุกต์ สอนการจัดการเชิงปริมาณ การหาค่าเหมาะสุดในการจัดการ และเป็นพื้นฐานในการประมาณค่าเหมาะสุดของปัญญาประดิษฐ์และการเรียนรู้ด้วยเครื่องจักร
วิชาการเรียนรู้ด้วยเครื่องจักรประยุกต์ (Applied Machine Learning) เป็นวิชาพื้นฐานตัวแรกของ AIML เลยครับ
หลังจากนั้นปีสอง จึงเริ่มเรียนวิชาเอกในสาขาวิชา เป็นวิชาเอกบังคับห้าวิชา คือ
หนึ่ง วิชาปัญญาประดิษฐ์ สองวิชาปัญญาประดิษฐ์ขั้นสูงซึ่งครอบคลุมไปถึง Computer Vision และ Robotics
สาม วิชาการหาค่าเหมาะสุดสำหรับปัญญาประดิษฐ์และการเรียนรู้ด้วยเครื่องจักร เรียนเพื่อให้เข้าใจขั้นตอนวิธีและการปรับจูนค่าพารามิเตอร์ของ AIML เพื่อให้สามารถพัฒนา AIML ตัวใหม่ๆ ต่อยอดไปได้ในอนาคต
สี่ วิชาการเรียนรู้เชิงลึก หรือ Deep learning ที่เรากำลังรู้จักกันดี
และ ห้า วิชาการเรียนรู้ด้วยเครื่องจักรขั้นสูง ซึ่งครอบคลุมไปถึงการเรียนรู้แบบรวมกลุ่ม (Ensemble learning) และการเรียนรู้แบบเสริมแรง (Reinforcement learning) ซึ่งนำมาใช้ในการพัฒนาปัญญาประดิษฐ์ให้สามารถเล่นโกะหมากล้อมได้ชนะแชมป์โลกได้
ฟังดูเหมือนจะยากใช่ไหมครับ สาขาวิชาปัญญาประดิษฐ์และการเรียนรู้ด้วยเครื่องจักร (AIML) เพื่อสร้างวิศวกรปัญญาประดิษฐ์ อาชีพใหม่ มาแรง มีอนาคตดี รายได้สูงของประเทศไทย ให้ออกไปทำงานรับใช้ชาติ
ถ้าถามว่าเรียนง่ายหรือไม่ คงไม่ใช่อย่างแน่นอน แต่ถ้าถามว่าท้าทาย เป็นประโยชน์ และเป็นโลกของอนาคตหรือไม่ คำตอบคือใช่
เมื่อปัญญาประดิษฐ์และการเรียนรู้ด้วยเครื่องจักรจะมาแทนมนุษย์ในการทำงาน
มนุษย์ที่จะมีงานทำต่อไปก็คือคนที่สร้างปัญญาประดิษฐ์และการเรียนรู้ด้วยเครื่องจักร เท่านั้น ซึ่งก็คือวิศวกรปัญญาประดิษฐ์นั่นเอง ซึ่งน่าจะอยู่รอดได้อีกนาน
ตราบใดที่ปัญญาประดิษฐ์ไม่คิดฆ่าล้างเผ่าพันธุ์คนที่คิดสร้างปัญญาประดิษฐ์ขึ้นมาไปเสียเอง!!! แต่ช้าก่อนเราจะวางใจได้จริงหรือ???