xs
xsm
sm
md
lg

เตือนภัย AI ถูกโจมตีผ่านข้อมูลซ่อนใน QR Code

เผยแพร่:   ปรับปรุง:   โดย: ผู้จัดการออนไลน์



วิศวกรไทย-ญี่ปุ่นเตือนภัยหลังผลวิจัยพิสูจน์ AI-Machine Learning ถูกโจมตีผ่านข้อมูลซ่อนในคิวอาร์โค้ดได้ ชี้ 2 แนวทางป้องกัน ย้ำแม้เทคโนโลยีจะเลิศล้ำเพียงใด ยังจำเป็นต้องมีมนุษย์ตรวจสอบเพื่อยืนยันผลลัพธ์ที่เชื่อถือได้

รศ.ดร.จักรกฤษณ์ ศุทธากรณ์ คณบดีคณะวิศวกรรมศาสตร์ มหาวิทยาลัยมหิดล กล่าวว่าเทคโนโลยีปัญญาประดิษฐ์ (AI) และ Machine Learning (ML) ยังมีคำถามเรื่องความปลอดภัยไว้วางใจได้ 100% หรือไม่? ทำให้ทีมวิศวกรนักวิจัยไทย-ญี่ปุ่น โดยคณะวิศวกรรมศาสตร์ มหาวิทยาลัยมหิดล ร่วมกับ สถาบันวิทยาศาสตร์และเทคโนโลยีขั้นสูงแห่งประเทศญี่ปุ่น หรือ JAIST (Japan Advanced Institute of Science and Technology) ลงมือทำวิจัยและได้รับการตีพิมพ์ในวารสารนานาชาติ เรื่อง การโจมตีการเรียนรู้ของเครื่องผ่านรูปแบบตัวอย่างปฏิปักษ์ (Attacking Machine Learning With Adversarial Examples) ชี้ให้เห็นว่า Machine Learning ยังมีช่องโหว่ภัยความเสี่ยงจากการโดนโจมตีที่จะสร้างความเสียหายได้

"ปัจจุบันเทคโนโลยี AI และ Machine Learning (ML) มีบทบาทในวิถีชีวิตของประชาชน การทำงาน และหลายธุรกิจอุตสาหกรรม เช่น การแพทย์สุขภาพ ธุรกิจการค้า อีคอมเมิร์ซ ตลาดทุนการเงิน ยานยนต์ขนส่งโลจิสติกส์ โทรคมนาคม การผลิตในอุตสาหกรรม ความมั่นคงปลอดภัยจึงเป็นเรื่องสำคัญ ผลงานวิจัยการโจมตีการเรียนรู้ของเครื่องผ่านรูปแบบตัวอย่างปฏิปักษ์นี้ได้รับการตีพิมพ์ในวารสารนานาชาติ Journal of Imaging นับเป็นงานวิจัยระดับนานาชาติที่ได้รับความสนใจอย่างสูงจากประชาคมโลก เนื่องจากเป็นครั้งแรกที่มีการออกแบบการโจมตี ML Model ในรูปแบบของ QR Code ซึ่งจะเป็นประโยชน์ต่อความมั่นคงปลอดภัยของบริการที่เข้าถึงประชาชนและองค์กรในวงการต่างๆ"

สำหรับทีมนักวิจัยไทย-ญี่ปุ่น จำนวน 3 คน มาจากการผนึกความร่วมมือระหว่างคณะวิศวกรรมศาสตร์ มหาวิทยาลัยมหิดล และสถาบันวิทยาศาสตร์และเทคโนโลยีขั้นสูงแห่งประเทศญี่ปุ่น (JAIST) ประกอบด้วย ดร.กรินทร์ สุมังคะโยธิน อาจารย์ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ ศ.โคตานิ คาซุโนริ และ ผศ.ปริญญา ศิริธนวันต์ จากสถาบัน JAIST

ศ. ปริญญา ศิริธนวันต์ (JAIST), ดร. กรินทร์ สุมังคะโยธิน (วิศวะมหิดล), ศ. โคตานิ คาซุโนริ (JAIST)
ดร.กรินทร์ สุมังคะโยธิน อาจารย์ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยมหิดล กล่าวถึงที่มาของงานวิจัย ว่า AI ปัญญาประดิษฐ์เป็นการทำให้คอมพิวเตอร์หรือเครื่องจักรฉลาด ส่วน Machine Learning (ML) เป็นหนึ่งในกระบวนการเรียนรู้ของ AI โดยการนำเข้าข้อมูลสู่อัลกอริทึม เพื่อสร้างโครงข่ายการตัดสินใจในการคาดคะเนแนวโน้มหรือทำนายผลลัพธ์ คล้ายคลึงกับการตัดสินใจของมนุษย์ เพื่อลดภาระงานหนักและความผิดพลาดจากความเหนื่อยล้า ตัดสินใจได้รวดเร็วกว่าเมื่อเทียบกับการทำงานของมนุษย์ อย่างไรก็ตามความเข้าใจถึงโครงสร้างการตัดสินใจของเน็ตเวิร์กโมเดลของ Machine Learning นั้นยังคงคลุมเครือ และยังคงเป็นสิ่งที่ต้องทำการศึกษาต่อไป

"ทำให้ในปัจจุบัน Machine Learning สามารถถูกโจมตีผ่านความคลุมเครือดังกล่าวจากผู้ประสงค์ร้าย เพื่อใช้ประโยชน์จากผลลัพธ์ที่ผิดเพี้ยน ด้วยเหตุนี้ทีมนักวิจัยจึงทำการศึกษาวิจัยด้านการโจมตี ML โดยมี วัตถุประสงค์เพื่อศึกษารูปแบบการโจมตีโดยมุ่งเน้นการโจมตีที่สามารถหลบหลีกการสังเกตจากมนุษย์ ซึ่งอาจจะสร้างความเสียหายหรือผลเสียได้อย่างมหาศาล ไม่ว่าจะเป็นแวดวงการเงิน การรักษาพยาบาล การสื่อสาร คมนาคมขนส่ง ระบบรักษาความปลอดภัยของข้อมูล ระบบการผลิต จนถึงระบบการป้องกันประเทศ"

 ดร.กรินทร์ สุมังคะโยธิน (วิศวะมหิดล)
ทีมวิจัยวิศวะมหิดล - JAIST ใช้เวลาศึกษาวิจัยร่วมกันกว่า 3 ปี แม้จะมีอุปสรรคช่วงวิกฤตโควิด-19 แต่ก็สามารถทำงานผ่านระบบออนไลน์บนแพลตฟอร์มที่มีประสิทธิภาพระดับสูงของญี่ปุ่น โดยได้ศึกษาวิเคราะห์และออกแบบการโจมตีการเรียนรู้ของ ML ผ่านรูปแบบตัวอย่างปฏิปักษ์ บนสมมติฐานโดยที่มีเป้าหมายในการโจมตี ML Model และสามารถหลบเลี่ยงการสังเกตจากมนุษย์ ทำให้ส่งผลกระทบต่อการตัดสินใจผิดพลาดของเครื่องจักร โดยการโจมตีนั้นสามารถมุ่งเป้าไปที่ผลลัพธ์ใดๆ ที่ถูกกำหนดไว้ล่วงหน้าได้

"เราได้กำหนดรูปแบบการโจมตีผ่านข้อมูลที่ถูกซ่อนใน ‘รูปแบบ QR-Code’ สำหรับฟังก์ชันการทำงานของการโจมตีในรูปแบบ Adversarial Examples เป็นการหลอก AI ให้สับสน โดยการใส่ข้อมูลปนเปื้อนลงไปในข้อมูลเป้าหมาย เช่น ข้อมูลภาพ ข้อมูลเสียง ข้อมูลสัญญาณ หรือข้อมูลประเภทอื่นๆ โดยผลการโจมตีนั้นมีทั้งแบบการกำหนดผลลัพธ์จากการโจมตีไว้ล่วงหน้า หรือทำให้ผลลัพธ์คลาดเคลื่อนจากสิ่งที่ควรจะเป็นได้"

 ศ.โคตานิ คาซุโนริ (JAIST)

ทีมวิศวกรไทย-ญี่ปุ่น วิเคราะห์และออกแบบการโจมตีการเรียนรู้ของ ML ด้วย Barcode
สรุปผลการวิจัย สามารถบีบอัดให้ข้อมูลการโจมตีผ่านข้อมูลที่ถูกซ่อนใน QR-Code ที่สามารถแสกนได้ และยังคงความสามารถของการโจมตีแบบมุ่งเป้าหมายผลลัพธ์ได้เป็นอย่างดี นอกจากการใช้ในการทดสอบการโจมตี Machine Learning แล้ว งานวิจัยชิ้นนี้ยังสามารถนำมาใช้พัฒนาระบบป้องกันและตรวจจับการโจมตีจากการวิเคราะห์โดย ML Model ในหลายๆ วัตถุประสงค์อีกด้วย เช่น ปกป้องความเป็นส่วนตัว ระบบป้องกันทางการทหารอีกด้วย เป็นการพิสูจน์ให้เห็นว่าการตัดสินใจของ Machine Learning ควรใช้เป็นเพียงเครื่องมือและนวัตกรรมที่ช่วยลดภาระงานของมนุษย์เท่านั้น ท้ายสุดแล้วยังคงต้องได้รับการตรวจสอบจากมนุษย์ผู้เชี่ยวชาญเพื่อยืนยันผลลัพธ์เป็นขั้นตอนสุดท้าย

จากความสำเร็จของงานวิจัยชิ้นนี้ แผนในอนาคต ทีมวิจัยไทย-ญี่ปุ่น จะคิดค้นหาวิธีการที่สามารถโจมตีได้มีประสิทธิภาพในระดับสูงขึ้นอีก ให้ก้าวทันเทคโนโลยีใหม่ๆ ที่เปลี่ยนแปลงรวดเร็ว และยังคงไว้ซึ่งความสามารถในการทำงานของรูปแบบข้อมูลดั้งเดิม (เช่น การโจมตีในรูปแบบ QR-Code ต้อง Scan ได้ เป็นต้น) สำหรับวิธีป้องกันการโจมตีในอนาคต Adversarial Example Attack มี 2 แนวทาง ได้แก่ 1.ใช้การโจมตี Adversarial Example เพื่อปกป้องข้อมูลจากการถูกตรวจสอบที่ไม่ได้รับอนุญาต 2.ใช้ข้อมูลที่ได้จากการโจมตี Adversarial Example นำกลับมาเพื่อวิเคราะห์ถึงการโจมตี และออกแบบ Machine Learning โมเดลที่ทนทานต่อการโจมตีมากยิ่งขึ้น

ข้อแนะนำสำหรับนักไอทีในการใช้ Machine Learning อย่างปลอดภัย ให้พึงระวังเสมอว่า ข้อมูลนำเข้าอาจถูกปนเปื้อนการโจมตีมุ่งเป้าในรูปแบบต่างๆ เช่น Adversarial Example หรืออาจพ่วงมากับมัลแวร์ ดังนั้นการใช้ Machine Learning เพื่อการทำงานที่มั่นคงและปลอดภัยมีความจำเป็นต้องมีวางระบบการตรวจสอบผลลัพธ์สุดท้ายโดยผู้เชี่ยวชาญ เพื่อความถูกต้องที่เชื่อถือได้อีกครั้ง อย่าปล่อยให้ Machine ทำงาน 100% ในปัจจุบัน AI และ Machine Learning ยังมีข้อจำกัดและจะเป็นตัวช่วยที่ดีได้ก็ต่อเมื่อทั้งคนและเครื่องจักรมีการคิดและทำงานประสานกันอย่างสมดุล ไม่อ้างอิงฝ่ายใดฝ่ายหนึ่งมากจนเกินไป


กำลังโหลดความคิดเห็น